Heat Flow
Quick Start
You have a hot surface put into contact with a stack of one or more materials - plastics (packaging), bricks (insulation), rocks (large-scale heat flows). How do their temperatures change over time? It depends on a bunch of parameters, which are carefully explained. Don't panic at the opening graphic - it all makes sense. For a single-layer app, see Insulation.
Credits
This app is part of the trio of Conductive (Insulation and Flow), Convective and Radiative heat transfer.
Heat Flow
//One universal basic required here to get things going once loaded
window.onload = function () {
//restoreDefaultValues(); //Un-comment this if you want to start with defaults
Main();
};
//Main() is hard wired as THE place to start calculating when inputs change
//It does no calculations itself, it merely sets them up, sends off variables, gets results and, if necessary, plots them.
function Main() {
//Save settings every time you calculate, so they're always ready on a reload
saveSettings();
//Send all the inputs as a structured object
//If you need to convert to, say, SI units, do it here!
const inputs = {
h1: sliders.Slideh1.value, //All calculations assume layers in microns
D1: sliders.SlideD1.value * 1e-7, //to correct units
h2: sliders.Slideh2.value, //All calculations assume layers in microns
D2: sliders.SlideD2.value * 1e-7, //to correct units
h3: sliders.Slideh3.value, //All calculations assume layers in microns
D3: sliders.SlideD3.value * 1e-7, //to correct units
h4: sliders.Slideh4.value, //All calculations assume layers in microns
D4: sliders.SlideD4.value * 1e-7, //to correct units
tMax: sliders.SlidetMax.value, //Assume seconds
TStart: sliders.SlideTStart.value, //Assumed to be degC
TTop: sliders.SlideTTop.value, //Assumed to be degC
TBelow: sliders.SlideTBelow.value, //Assumed to be degC
K: sliders.SlideK.value,
Cp: sliders.SlideCp.value,
rho: sliders.Sliderho.value,
hStep: sliders.SlidehStep.value,
tStep: sliders.SlidetStep.value,
};
//Send inputs off to CalcIt where the names are instantly available
//Get all the resonses as an object, result
console.time("time")
const result = CalcIt(inputs);
//Set all the text box outputs
document.getElementById('DCalc').value = result.DCalc;
// document.getElementById('Solid').value = result.sInfo;
//Do all relevant plots by calling plotIt - if there's no plot, nothing happens
//plotIt is part of the app infrastructure in app.new.js
if (result.plots) {
for (let i = 0; i < result.plots.length; i++) {
plotIt(result.plots[i], result.canvas[i]);
}
}
console.timeEnd("time")
//You might have some other stuff to do here, but for most apps that's it for Main!
}
//Here's the app calculation
//The inputs are just the names provided - their order in the curly brackets is unimportant!
//By convention the input values are provided with the correct units within Main
function CalcIt({ h1, D1, h2, D2, h3, D3, h4, D4, hStep, tStep, tMax, TStart, TTop, TBelow, K, Cp, rho }) {
//Do the D calculation first
const DCalc=K/(Cp*rho)
const isFloating = (TBelow <1)
let Thick = [] //Thickness
let D = [] //Diffusivity
if (h1 > 0) {
Thick.push(h1)
D.push(D1)
}
if (h2 > 0) {
Thick.push(h2)
D.push(D2)
}
if (h3 > 0) {
Thick.push(h3)
D.push(D3)
}
if (h4 > 0) {
Thick.push(h4)
D.push(D4)
}
let LThick = [], NLayers = 0, TotThick = 0, SumThick = [], LTC = [], LHC = []
let plotData = [], lineLabels = [], myColors = [], borderWidth = [], dottedLine = []
for (var i = 0; i < Thick.length; i++) {
LThick[NLayers] = Thick[i]
TotThick += Thick[i]
SumThick[NLayers] = TotThick
NLayers += 1
};
var GSteps = Math.floor(TotThick / hStep)
var GD = [], GT = [], TmpT = [], ThisLayer = 0
for (var i = 0; i < GSteps; i++) {
if (i * hStep >= SumThick[ThisLayer]) { ThisLayer += 1 }
GD[i] = D[ThisLayer]*1e18 //Convert from cubic microns
GT[i] = TStart
TmpT[i] = GT[i]
};
GT[0] = TTop;
GT[GSteps - 1] = isFloating?TStart:TBelow
GT[GSteps] = isFloating?TStart:TBelow
//Now do things in small steps and report them every 0.01s
let tNow = 0, TShow = 0.01, TStep = 0.000001*tStep, TNext = TShow
let JFact = 1e-6 / (hStep * hStep) //*TStep//Each slice is in microns but units are in m and convert from Watts to J
while (tNow <= tMax) {
for (let i = 1; i < GSteps - 2; i++) {
TmpT[i] = GT[i] + (((GT[i - 1] - GT[i]) * GD[i] - (GT[i] - GT[i + 1]) * GD[i + 1]) * JFact * TStep)
};
i = GSteps - 2
if (isFloating) {
TmpT[i] = GT[i] + (((GT[i - 1] - GT[i]) * GD[i]) * JFact * TStep)
} else {
TmpT[i] = GT[i] + (((GT[i - 1] - GT[i]) * GD[i] - (GT[i] - GT[i + 1]) * GD[i + 1]) * JFact * TStep)
}
for (let i = 1; i < GSteps - 1; i++) {
GT[i] = TmpT[i]
};
if (tNow >= TNext) {
let tPts = []
for (var i = 0; i < GSteps - 1; i++) {
tPts.push({ x: GT[i], y: TotThick - i * hStep })
};
if (isFloating) {tPts.push({ x: GT[GSteps-2], y: 0 })} else {tPts.push({ x: GT[GSteps-1], y: 0 })}
rbow = Rainbow(tNow / tMax); Col = "rgb(" + rbow.r + "," + rbow.g + "," + rbow.b + ")"
plotData.push(tPts)
lineLabels.push(tNow.toFixed(2) + "s")
myColors.push(Col)
borderWidth.push(2)
dottedLine.push(false)
TNext += TShow
}
tNow += TStep
}//Big While
//Dotted lines between layers
for (i=0;i < NLayers-1;i++){
yPos = TotThick-SumThick[i]
makeDotted(plotData, lineLabels, myColors, borderWidth, dottedLine, yPos, TTop, hStep, "Layer "+(i+1))
}
//Now set up all the graphing data.
//We use the amazing Open Source Chart.js, https://www.chartjs.org/
//A lot of the sophistication is addressed directly here
//But if you need something more, read the Chart.js documentation or search Stack Overflow
//Now set up all the graphing data detail by detail.
const prmap = {
plotData: plotData, //An array of 1 or more datasets
lineLabels: lineLabels, //An array of labels for each dataset
colors: myColors, //An array of colors for each dataset
dottedLine: dottedLine,
borderWidth: borderWidth,
hideLegend: true,
xLabel: 'T&°C', //Label for the x axis, with an & to separate the units
yLabel: 'z&μm', //Label for the y axis, with an & to separate the units
y2Label: null, //Label for the y2 axis, null if not needed
yAxisL1R2: [], //Array to say which axis each dataset goes on. Blank=Left=1
logX: false, //Is the x-axis in log form?
xTicks: undefined, //We can define a tick function if we're being fancy
logY: false, //Is the y-axis in log form?
yTicks: undefined, //We can define a tick function if we're being fancy
legendPosition: 'top', //Where we want the legend - top, bottom, left, right
xMinMax: [,], //Set min and max, e.g. [-10,100], leave one or both blank for auto
yMinMax: [,], //Set min and max, e.g. [-10,100], leave one or both blank for auto
y2MinMax: [,], //Set min and max, e.g. [-10,100], leave one or both blank for auto
xSigFigs: 'F0', //These are the sig figs for the Tooltip readout. A wide choice!
ySigFigs: 'F0', //F for Fixed, P for Precision, E for exponential
};
//Now we return everything - text boxes, plot and the name of the canvas, which is 'canvas' for a single plot
return {
DCalc:DCalc.toExponential(3),
plots: [prmap],
canvas: ['canvas'],
};
function makeDotted(plotData, lineLabels, myColors, borderWidth, dottedLine, yPos, TTop, hStep, theLabel) {
let tPts = []
//yPos+=hStep
tPts.push({ x: 20, y: yPos }, { x: TTop, y: yPos })
plotData.push(tPts)
lineLabels.push(theLabel)
myColors.push("rgba(2,100,100,0.5)")
borderWidth.push(1)
dottedLine.push(true)
}
}
var RB = [[0, 48, 245], [0, 52, 242], [0, 55, 238], [0, 59, 235], [3, 62, 231], [9, 66, 228], [14, 69, 225], [18, 72, 221], [20, 74, 218], [22, 77, 214], [23, 80, 211], [24, 82, 207], [25, 85, 204], [25, 87, 200], [25, 90, 197], [25, 92, 193], [25, 94, 190], [25, 96, 187], [24, 99, 183], [24, 101, 180], [24, 103, 177], [23, 105, 173], [23, 106, 170], [24, 108, 167], [24, 110, 164], [25, 112, 160], [27, 113, 157], [28, 115, 154], [30, 117, 151], [32, 118, 148], [34, 120, 145], [36, 121, 142], [39, 122, 139], [41, 124, 136], [43, 125, 133], [45, 126, 130], [47, 128, 127], [49, 129, 124], [51, 130, 121], [53, 132, 118], [54, 133, 115], [56, 134, 112], [57, 136, 109], [58, 137, 106], [59, 138, 103], [60, 139, 99], [61, 141, 96], [62, 142, 93], [62, 143, 90], [63, 145, 87], [63, 146, 83], [64, 147, 80], [64, 149, 77], [64, 150, 74], [65, 151, 70], [65, 153, 67], [65, 154, 63], [65, 155, 60], [66, 156, 56], [66, 158, 53], [67, 159, 50], [68, 160, 46], [69, 161, 43], [70, 162, 40], [71, 163, 37], [73, 164, 34], [75, 165, 31], [77, 166, 28], [79, 167, 26], [82, 168, 24], [84, 169, 22], [87, 170, 20], [90, 171, 19], [93, 172, 18], [96, 173, 17], [99, 173, 17], [102, 174, 16], [105, 175, 16], [108, 176, 16], [111, 176, 16], [114, 177, 17], [117, 178, 17], [121, 179, 17], [124, 179, 18], [127, 180, 18], [130, 181, 19], [132, 182, 19], [135, 182, 20], [138, 183, 20], [141, 184, 20], [144, 184, 21], [147, 185, 21], [150, 186, 22], [153, 186, 22], [155, 187, 23], [158, 188, 23], [161, 188, 24], [164, 189, 24], [166, 190, 25], [169, 190, 25], [172, 191, 25], [175, 192, 26], [177, 192, 26], [180, 193, 27], [183, 194, 27], [186, 194, 28], [188, 195, 28], [191, 195, 29], [194, 196, 29], [196, 197, 30], [199, 197, 30], [202, 198, 30], [204, 199, 31], [207, 199, 31], [210, 200, 32], [212, 200, 32], [215, 201, 33], [217, 201, 33], [220, 202, 34], [223, 202, 34], [225, 202, 34], [227, 203, 35], [230, 203, 35], [232, 203, 35], [234, 203, 36], [236, 203, 36], [238, 203, 36], [240, 203, 36], [241, 202, 36], [243, 202, 36], [244, 201, 36], [245, 200, 36], [246, 200, 36], [247, 199, 36], [248, 197, 36], [248, 196, 36], [249, 195, 36], [249, 194, 35], [249, 192, 35], [250, 191, 35], [250, 190, 35], [250, 188, 34], [250, 187, 34], [250, 185, 34], [250, 184, 33], [250, 182, 33], [250, 180, 33], [250, 179, 32], [249, 177, 32], [249, 176, 32], [249, 174, 31], [249, 173, 31], [249, 171, 31], [249, 169, 30], [249, 168, 30], [249, 166, 30], [248, 165, 29], [248, 163, 29], [248, 161, 29], [248, 160, 29], [248, 158, 28], [248, 157, 28], [248, 155, 28], [247, 153, 27], [247, 152, 27], [247, 150, 27], [247, 148, 26], [247, 147, 26], [246, 145, 26], [246, 143, 26], [246, 142, 25], [246, 140, 25], [246, 138, 25], [245, 137, 24], [245, 135, 24], [245, 133, 24], [245, 132, 24], [244, 130, 23], [244, 128, 23], [244, 127, 23], [244, 125, 23], [244, 123, 22], [243, 121, 22], [243, 119, 22], [243, 118, 22], [243, 116, 21], [242, 114, 21], [242, 112, 21], [242, 110, 21], [241, 109, 21], [241, 107, 21], [241, 105, 21], [241, 103, 21], [240, 101, 21], [240, 100, 22], [240, 98, 22], [240, 96, 23], [240, 95, 24], [240, 93, 26], [240, 92, 27], [240, 90, 29], [240, 89, 31], [240, 88, 33], [240, 87, 36], [240, 87, 38], [241, 86, 41], [241, 86, 44], [242, 86, 47], [242, 86, 51], [243, 86, 54], [243, 87, 58], [244, 88, 62], [245, 88, 65], [245, 89, 69], [246, 90, 73], [247, 91, 77], [247, 92, 82], [248, 94, 86], [249, 95, 90], [249, 96, 94], [250, 97, 98], [251, 99, 102], [251, 100, 106], [252, 101, 111], [252, 103, 115], [253, 104, 119], [253, 105, 123], [254, 107, 128], [254, 108, 132], [255, 109, 136], [255, 111, 140], [255, 112, 145], [255, 114, 149], [255, 115, 153], [255, 116, 157], [255, 118, 162], [255, 119, 166], [255, 120, 170], [255, 122, 175], [255, 123, 179], [255, 125, 183], [255, 126, 188], [255, 127, 192], [255, 129, 196], [255, 130, 201], [255, 132, 205], [255, 133, 210], [255, 134, 214], [255, 136, 219], [255, 137, 223], [255, 139, 227], [255, 140, 232], [255, 141, 236], [254, 143, 241], [254, 144, 245], [253, 146, 250]]
function Rainbow(v) {
var i = Math.floor((Math.min(v, 1), Math.max(v, 0)) * 255)
r = RB[i][0]
g = RB[i][1]
b = RB[i][2]
return { r: r, g: g, b: b }
}
You have a heat source at temperature TTop at the top of a stack of materials. At the other side of the stack you either have the temperature "floating" or it's connected to a heat source/sink at temperature TBelow. At time t=0 the stack material is all at Tstart. What we want to know is what the temperature is at any given point in the stack after any given time. And the graph (plus the mouse readout) tells you everything you need to know.
The Rainbow Graph
To see what's happening to temperature and time we have to plot 3 variables in a 2D graph. It turns out to be clearest to plot temperature on the X-axis, the stack itself on the Y-axis (with dotted lines showing the different layers) and to show the time evolution of temperature as a rainbow-coloured set of lines from blue at short times to red at long times. It takes a while to get used to it, but you will. And if you move your mouse you get a readout of everything.
Thermal Diffusivity
For each layer you have to enter the thickness (obviously) and the thermal diffusivity, D. Most of us have heard of thermal conductivity, K (J/m.K), so why use diffusivity? We are interested in how the temperature changes throughout the system. That depends, of course, on the heat flowing in via conductivity but it also depends on the head capacity Cp (J/kg.K) (heat needed to raise the temperature of 1kg by a degree) and, therefore, on the density ρ (kg/m³), the mass per unit volume. Fortunately, the thermal diffusivity, in m²/s combines all three parameters.
`D=K/(Cp.ρ)`
You can find a lot of values on Wikipedia's Thermal Diffusivity page
If you happen to know the thermal conductivity but not the diffusivity, use the calculator. If you don't know the heat capacity or density, enter 2000 and 1000 respectively. The calculated values are inconveniently small, hence the 10-7 adjustment implied when you enter the D values.
Where are the units?
For thickness and time no units are specified. In fact the underlying units in the calculation are μm and s. However, because the calculation is general, the thickness units could be in mm or m and the calculations remain correct provided you mentally adjust the time units. So if you have a structure defined in mm, you simply tell yourself that 1 thickness unit is 1mm and therefore if you calculate for 1 time unit, that's 1000s.
Why have I done it this way? Because any slider that went from 1μm to 1km or from 1ms to 1ks would be useless. The single app lets us explore heat flows through packaging films (10s of μms), heat flows through brick walls with insulation panels, and heat flows through kms of rocks.
What cannot be left unitless are the D values. A slider that covers everything from insulating aerogel to highly conductive silver is a bit impractical so there are some restrictions on what you can model.
Floating or not
If TBelow is set to 0 then it is assumed that the lowest surface makes no thermal contact, so the temperature can "float". In fact this can simulate something like heat sealing of a symmetrical structure - it's not that the middle of the heat seal is "floating", it's just that via symmetry we can calculate what's happening via this numerical trick. So you can simulate an 8-layer sealing process with a 4-layer model.
Thermal Contact Resistance
This model assumes that the top heat source is in perfect contact with the top layer and the heat can flow with infinite ease. In practice there is a thermal contact resistance from imperfections in contact. It can be modelled in the Contacts app. I could add a thermal resistance input, but that would make the interface even more complex!
Numerics
The calculations are numerical interations based on cutting the layers into virtual slices of thickness hStep and calculating what's happened after a short time interval of tStep. If you choose a larger hStep calculations are faster but you lose detail of smaller layers. If you go smaller in hStep the calculations can blow up (you see nothing in the graph or get funny lines). The fix is to reduce the tStep value, but then calculations are doubly slower. The default values of 5 are fine for many purposes but if you need very fine detail (small hStep) then you might need a small tStep. If you have a slow device then you need a larger hStep and a larger tStep, but again, too large in tStep and the calculation will blow up.